Formal Verification of the
eBPF Verifier with Agni

Santosh Nagarakatte @ LSFMMBPF 2025, Montreal
Rutgers University

Joint work with Harishankar Vishwanathan, Matan Shachnai, and Srinivas Narayana

9 &]TGERS RAPL - Rutgers Architecture and Programming Languages Lab

eBPF Verifier’s Goals: Soundness, Precision, and Speed

&

Soundness : Unsafe programs should be rejected
ﬁ Precision : Safe programs shouldn't be rejected

« Speed: Minimal load times + Prompt feedback on rejection

Writing sound and precise static analysis is hard

Process

sendmsg() recvmsg O

Can we formally verify the soundness of the static analyS|s in the
eBPF verifier?

Kernel State H unsafe

g]{JTGERS RAPL - Rutgers Architecture and Programming Languages Lab

Static Analyses in the eBPF Verifier and Our Work

4 XeBPF Verifier)
N
bitwise range
[tracking } [tracking J
'_/
- _/

* Tnums [CGO '22]: Reasoning about the soundness of bitwise tracking -
Manually encoded correctness specification and semi-manual verification

 Agni [CAV '23]: Automated reasoning about the soundness and precision of the
range analysis + bitwise tracking + their combination

Agni++[SAS’24]: Fixing the latent unsoundness in the abstract operators

LinuX
Kernel

52 |ma] [Q_]TGERS RAPL - Rutgers Architecture and Programming Languages Lab

Develop Automated Verification
Tools that can be used to check a
patch before it is accepted
(e.g., as part of Cl)

Thanks to Paul Chaignon for running Cl with Agni for the latest bpf-next

W IQ_JTGERS RAPL - Rutgers Architecture and Programming Languages Lab

Overview of the Agni, which “Verifies the Verifier”

« ~5000 LOC
e . Only model
subset of C
Verifier's (Automated (W (Synthesize
C source » CtoSMT » Verification > eBPF
code . Generation J L J L Programs
e lc it LNIINA?
Verifier Custom trans- . v
in LLVM IR formation LLVMToSMT SMT file
0a55eS | POC eBPF
program
« Inline function calls « Bitvector theory
 Eliminate dead code « Leverage MemorySSA
« Lower memcpys analysis

[QJTGERS RAPL - Rutgers Architecture and Programming Languages Lab

Specification at the lowest
abstraction level (C code) makes
verification challenging

‘""]QJTGERS RAPL - Rutgers Architecture and Programming Languages Lab

When is an Abstract Operator Sound?

?) mem,; (y,Q)
T interval\Y, A
e:{(\u'v“ - - ~ N ~
s // 4
)) P Q abstract

I I input states
concrete x y l l

inputs l l e ~

abstract output
state

concrete abstract operator
f operator P —> R ~

concrete \) /|

output z -

§~~
i .
e e e e ===

meminterval(z ’ R)

&JTGERS RAPL - Rutgers Architecture and Programming Languages Lab

Soundness Specification in First Order Logic

VP, Q € Aipterval :

Va,y € Lgs :

meminterval(x, P) A meminterval(ya Q) N\
&= f(x? y) N\

R = g(P, Q) — meminterval('z; R)

IKUTGERS RAPL - Rutgers Architecture and Programming Languages Lab

Value Tracking Abstract Domains in the Linux Kernel

/At } siwise domain

A unsigned 64)
ub4d
As64 signed 64

> .
Au32 unsigned 32 interval domains
A332 signed 32)

K Domain of all abstract domains: A/

JAN
A = Ag X Ayga X Agga X Ayzo X Agzo

RAPL - Rutgers Architecture and Programming Languages Lab

Soundness Specification with Multiple Domains

VP, () € A

Va,y € Zeg :

mema(x, P) Amema(y,Q) A
<= f(il?, y) A

R=g(P,Q) = memyu(z, R)

'6 IKUTGERS RAPL - Rutgers Architecture and Programming Languages Lab

10

Challenges of Verifying Real World Code

® Performed verification on all kernel Kernel Version Sound?
versions starting from v4.14 va.14 X
‘® Are all versions truly unsound? G5 | V8.5 X

What is the cause of verification failures?

v5.12

v5.13

v5.14

v5.15

X X X| X| X

&jTGERS RAPL - Rutgers Architecture and Programming Languages Lab

gl

\\""/%

B

Implicit Refinement in the Kernel

abstract abstractALUOp(
concreteOP op, abstract P, abstract Q)
{

abstract R;
switch (op) {
case BPF_ADD:

R = abstractOpADD(P, Q);
case BPF_SUB:

R = abstractOpSUB(P, Q);

case BPF_MUL:
R = abstractOpMUL(P, Q);

| Shared R ¥ S reg_bounds_sync(R);
, refinement j«---~ return 0;
| operator |

[Q]TGERS RAPL - Rutgers Architecture and Programming Languages Lab 12

Shared Refinement Operator Preconditions Abstract States

Re S ~a o abstract
/ , S ar T a @2 input states
concrete x; x | I
inputs

All inputs abstract values are preconditioned by a

shared refinement operator

concrete shared
output xo refinement sro

operator

\ v

AN ;ao abstract output
N o _ - state

RAPL - Rutgers Architecture and Programming Languages Lab 13

A Soundness Specification in the presence of SRO

VP, Q) e A :
VP. A : ’
Vo " ZQ EZ . R, = sync(P) N Rg = sync(Q) A
T,y € Lugg :
mema(z, P) Amema(y, @) A :i:jz G(QZ 612 :) N memy(y, Rg) N
c = fx,y) N

z = f(z,y) A

R = g(P,, Q) —> memy(z, R) R = g(Rp, RQ) —> memy(z, R)

NN/

[Q_]TGERS RAPL - Rutgers Architecture and Programming Languages Lab

14

Success in Proving the Soundness of Some Kernels

® Proved that all abstract operators in . Kernel Version Sound?
kernels starting from v5.13 are sound va.14 X
® What can we do about unsound v5.5 X
versions? e T P < V5.7 X
\; x
How do we convince developers that .| v°-12 X
these actual bugs? v5.13
W.e ger)erate qctual eBPF programs 514

using differential program synthesis!

. [CAV 2023] | vB15
e

&]TGERS RAPL - Rutgers Architecture and Programming Languages Lab

What does an operator being
unsound mean?
There exists input abstract states
where the operator produces an ill-
formed output abstract state

" &]TGERS RAPL - Rutgers Architecture and Programming Languages Lab 16

Is this “Unsoundness” realizable?

[&]TGERS RAPL - Rutgers Architecture and Programming Languages Lab

17

Differential Synthesis for Synthesizing eBPF Programs

A

€ Initial
€ ﬁﬁi \
g*(FOR(g*/g*) ?# = abstractOpOR(?#, ?#)
. - —_ e 7 o \
\\ \

concrete abstract

&]TGERS RAPL - Rutgers Architecture and Programming Languages Lab 18

gp) RUTGERS

Concrete Proof of Concept
Programs were helpful to
reproducing the bugs

RAPL - Rutgers Architecture and Programming Languages Lab

19

When Verification Tools are Continuously Used

author Alexei Starovoitov <ast@kernel.org> 2023-11-02 08:59:05 -0700
committer Alexei Starovoitov <ast@kernel.org> 2023-11-09 18:58:40 -0800
commit cd9c127069c040d6b022f1ff32fed4b52b9a4017 (patch)

tree 61c346febad979fc120c6802a38104F14f948551

parent bf4a64b9323f181df8aba32d66cb37b9fa5df959 (diff)

parent 4621202adc5bc0d1006af37fe8b9acal31387d3c (diff)

download bpf-next-cd9c127069c0.tar.gz

Merge branch 'bpf-register-bounds-logic-and-testing-improvements'

Andrii Nakryiko says:

BPF register bounds logic and testing improvements

This patch set adds a big set of manual and auto-generated test cases
validating BPF verifier's register bounds tracking and deduction logic. See
details in_the 12 patch

We start
verifier
needed a |
covered.
was incomp
implementation of register bounds logic that tests in this patch set
implement. So we need BPF verifier logic improvements to make all the tests
pass. This is what we do in patches #3 through #9.

The end goal of this work, though, is to extend BPF verifier range state
tracking such as to allow to derive new range bounds when comparing non-const
registers. There is some more investigative work required to investigate and
fix existing potential issues with range tracking as part of ALU/ALUG64
operations, so <range> x <range> part of v5 patch set ([0]) is dropped until
these issues are sorted out.

For now, we include preparatory refactorings and clean ups, that set up BPF
verifier code base to extend the logic to <range> vs <range> logic 1in
subsequent patch set. Patches #10-#16 perform preliminary refactorings without
functionally changing anything. But they do clean up check_cond_jmp_op() logic
and generalize a bunch of other pieces 1in 1dis_branch_taken() logic.

[0] https://patchwork.kernel.org/project/netdevbpf/list/?series=797178&state=x*

V5->v6:
- dropped <range> vs <range> patches (original patches #18 through #23) to

RUTGERS

Kernel Version

Solving Time

v4.1l4

2.5h

vH5.5

2.5N

v5.9

4h

v5.13

10h

v6.4

Can we significantly reduce the solving time?

several weeks

v6.5

timeout

v6.6

timeout

v6.7

timeout

v6.8

timeout

RAPL - Rutgers Architecture and Programming Languages Lab

20

Why is Solving Time Slow?

LT TIEmRIII L
-, e R |
7 d
/ /
, , P Q abstract
I I input states
concrete x y l l

inputs
l l [\ abstract output
concrete abstract shared state
refinement
f operator] operator operator > R v\\
\
concrete opg Sro \
1
output z _ Y, |

\ g 7’
N P

-

Few ~700 lines of ~5000 lines of SMT for
SMT for e.g. BPF_AND
e.g. BPF_AND

[QJTGERS RAPL - Rutgers Architecture and Programming Languages Lab

~3000 lines of SMT

Divide and Conquer to Make Verification Feasible

Can we individually verify op, and sro ?

abstract
operator

\ Opg Sro

J

8

&jTGERS RAPL - Rutgers Architecture and Programming Languages Lab

Divide and Conquer to Make Verification Feasible

_———— .

/// /// X 4
K / p abstract
, .
' | input states
concrete x y l
inputs [\ intermediate
abstract
concrete abstract Et,p u;?s'tatve
f operator operator Y
concrete \ oPs
output z -
N ’—"

—
~~__ —’—
O e e e -

g RUTGERS

RAPL - Rutgers Architecture and Programming Languages Lab

’ |
/
! P’ abstract
,' input state
]
I
I
I
e N .
I final abstract
! shared output state
concrete x' refinement —— R
input 1 operator A
1
\ S1ro /
\ /
\ \ /
\ /
\ /
N\ 7
N 7’
\\ //

~
~_——’

and R is a refinement of P’

23

Why Divide-and-Conquer Fails?

/
P’ abstract
l input state

final abstract
output state

_’R

n
@)
cC
)
o
- |
__/
>

R - e - R | |
, / p Q abstract
/ / i
| | input states
concrete x y l
inputs \ intermediate
P abstract
: output state
f [sound?] —— B
\ \\
\
concrete oPs /I
output 2 P
sound

RUTGERS

~
-

— o =

and R is a refinement of P’

RAPL - Rutgers Architecture and Programming Languages Lab

24

Latent Unsoundness in the Abstract Operators

RUTGERS

[

case BPF_AND:
out.tnum = tnum_and(inl, in2);

out.s32, out.u32
out.s64, out.ub64

interval_and_32(inl, in2);

interval_and_64(inl, in2);/

case BPF_OR:

out

= sro(out);

RAPL - Rutgers Architecture and Programming Languages Lab

25

Latent Unsoundness: interval _and_64

AN

case BPF_AND:
out.tnum = tnum_and(inl, in2);
out.s32, out. u32 = 1nterval and 32(1nl, 1n2)

1. def interval_and_64(inl, in2):
2 out.u64_min = inl.tnum_value;
3. out.u64_max = min(inl.u64_max, in2.u64_max);
4 if (inl.s64_min < @ || in2.s64_min < 0):
5 out.s64_min = INT64_MIN;

............................. 6. out.s64_max = INT64_MAX;

| Jieelee:
8 . out.s64_min = out.ub4_min; !

Unsafe casting - unsigned to signed 9. . out.s64_max. =. out.ub4_max;. . . :

52| ma WTGERS RAPL - Rutgers Architecture and Programming Languages Lab

26

Avoiding Latent Unsoundness: When is such Casting Safe?

- 1. s64_min = u64_min;
Unsafe casting - unsigned to signed . 2. sB4_max = ubd_max;

[Unsigned] [Signed]

u64_min £ u64_max < 263-1 v : 0 £ s64_min £ s64_max
283-1 < u64_min £ u64_max % s64_min < s64_max <0

u64 _min < 2%3-1 < U64_max ;6 : s64_max < 0 £ s64_min

l{UTGERS RAPL - Rutgers Architecture and Programming Languages Lab

27

Fixing Latent Unsoundness

def interval_and_64(inl, in2): def FIXED_interval_and_64(inl, in2):
out.u64_min = inl.tnum_value; out.u64_min = inl.tnum_value;
out.u64_max = min(inl.u64_max, in2.u64_max); out.uB4_max = min(inl.u64_max, in2.u64_max);
if (inl.s64_min < @ || in2.s64_min < 0): if ((s64) out.u64_min <= (s64) out.u64_max):
out.s64_min = INT64_MIN; out.s6ff min = INT64_MIN;
ou-t.s mav..— TNTaA MAY. - ou TALT O 4 MAN.
else: sound?] else: sound?]
out.s out g
out.s64_max = out.u64_max; " out.s64_max = out.u64_max; ‘
Unsafe casting Safe casting

N\

9 &]TGERS RAPL - Rutgers Architecture and Programming Languages Lab

Divide-and-Conquer Makes Verification Super Fast!

Old Strategy New Strategy

Kernel Version Runtime Runtime Sound before Sound after
vd.1l4 2.5h <5 min BPF Instruction patch? patch?
v5.5 2.5h <5 min bpf_and x v
v5.9 4h <5 min bpf_and_32 % Vv
v5.13 10h 5 min
< bpf_or X v

v5.19 36h <15 min

bpf_or_32 x v
v6.3 36h <15 min

bpf_xor x v
v6.4 several weeks <15 min v
v6.5 timeout <15 min bpf_xor_32 x
v6.6 timeout <15 min
v6.7 timeout <15 min
v6.8 timeout <30 min

[QJTGERS RAPL - Rutgers Architecture and Programming Languages Lab

Some Patches Upstreamed after Verification with Agni

//;uthor

committe
commit
tree
parent
download

Harishankar Vishwanathan <harishankar.vishwanathan@gmail.com>

~

r Daniel Borkmann <daniel@iogearbox.net> 2024-04-16 17:55:27 +0200

1f586614f3ffa80fdf2116b2albebcdb5969cef8 (patch)
7b5f4fa20fcbbdf316f4832c33d79dc8d4e8723d
dace45fc9fa653e250f991ea8350b32cfec690d2 (diff)
bpf-next-1f586614f3ff.tar.gz

7dc4@33§\\?pf: Harden and/or/xor value tracking in verifier

/

e8e0f01f484780d7b90a63ea50020ac4bb027178d (diff)

author Harislh
committer Dar
commit 05924
tree

parent

download

_

bpf-next-05924717ac70.tar.gz

bpf, tnums: Provably sound, faster, and more precise algorithm for tnum_mul

RUTGERS

*unning Agni as part of Cl — Thanks Paul and Hari

RAPL - Rutgers Architecture and Programming Languages Lab

30

Improving the Precision of the Abstract Operators

* [PATCH bpf-next v4 1/2] bpf, verifier: Improve precision of BPF_MUL
2024-12-18 3:23 [PATCH bpf-next v4 0/2] bpf, verifier: Improve precision of BPF_MUL Matan Shachnai
@ 2024-12-18 3:23 ° Matan Shachnai
2024-12-18 3:23 ° [PATCH bpf-next v4 2/2] selftests/bpf: Add testcases for BPF_MUL Matan Shachnai
2024-12-30 23:00 = [PATCH bpf-next v4 @/2] bpf, verifier: Improve precision of BPF_MUL patchwork-bot+netdevbpf
2 siblings, @ replies; 4+ messages in thread
From: Matan Shachnai @ 2024-12-18 3:23 UTC (permalink / raw)
To: ast
Cc: harishankar.vishwanathan, srinivas.narayana, santosh.nagarakatte,
m.shachnai, Matan Shachnai, Daniel Borkmann, John Fastabend,
Andrii Nakryiko, Martin KaFai Lau, Eduard Zingerman, Song Liu,
Yonghong Song, KP Singh, Stanislav Fomichev, Hao Luo, Jiri Olsa,
Mykola Lysenko, Shuah Khan, Cupertino Miranda, Menglong Dong, bpf,

pneckernet, tnwckeelftest Upstreamed a few months ago to
This patch improves (or maintains) the precision of register value tracking
in BPF_MUL across all possible inputs. It also simplifies bpf-next

scalar32_min_max_mul() and scalar_min_max_mul().
As it stands, BPF_MUL is composed of three functions:

case BPF_MUL:
tnum_mul();
scalar32_min_max_mul();
scalar_min_max_mul();

The current implementation of scalar_min_max_mul() restricts the u64 input
ranges of dst_reg and src_reg to be within [0, U32_MAX]:

/* Both values are positive, so we can work with unsigned and
* copy the result to signed (unless it exceeds S64_MAX).
*/
if (umax_val > U32_MAX || dst_reg—->umax_value > U32_MAX) {
/* Potential overflow, we know nothing */
__mark_reg64_unbounded(dst_reg);
return;

&]TGERS RAPL - Rutgers Architecture and Programming Languages Lab

Looking Ahead?

Specify the verifier at a higher level of abstraction?

Verifier in user space?

Automatically Checking the Precision of Operators?

A compiler explorer like framework for the eBPF
verifier? Patches with correctness arguments

" &]TGERS RAPL - Rutgers Architecture and Programming Languages Lab 32

“Always-on” Lightweight Formal
Methods have the potential to make
the eBPF verifier robust

‘""]QJTGERS RAPL - Rutgers Architecture and Programming Languages Lab

33

Open Source

Visit the Agni GitHub page for details: https://github.com/bpfverif/agni

N eppF

FOUNDATION

52 |ma] &]TGERS RAPL - Rutgers Architecture and Programming Languages Lab

34

https://github.com/bpfverif/agni

