
RAPL - Rutgers Architecture and Programming Languages Lab

Formal Verification of the
eBPF Verifier with Agni

Santosh Nagarakatte @ LSFMMBPF 2025, Montreal
Rutgers University

Joint work with Harishankar Vishwanathan, Matan Shachnai, and Srinivas Narayana

RAPL - Rutgers Architecture and Programming Languages Lab

eBPF Verifier’s Goals: Soundness, Precision, and Speed

• Soundness : Unsafe programs should be rejected

2
Images from https://ebpf.io/

• Precision : Safe programs shouldn't be rejected
• Speed: Minimal load times + Prompt feedback on rejection

safe unsafe

Writing sound and precise static analysis is hard

🐞
🐞

Can we formally verify the soundness of the static analysis in the
eBPF verifier?

RAPL - Rutgers Architecture and Programming Languages Lab

Static Analyses in the eBPF Verifier and Our Work

3

Verifier

ALU
Sanitation

State
Pruning

Helper
functions

Types

Value
tracking

Spectre
mitigations

…

Li
nu

x
Ke

rn
el

bitwise
tracking

range
tracking

Value
tracking

Verifier

bitwise
tracking

Verifier

• Agni [CAV '23]: Automated reasoning about the soundness and precision of the
range analysis + bitwise tracking + their combination

• Agni++[SAS’24]: Fixing the latent unsoundness in the abstract operators

bitwise
tracking

range
tracking

Verifier

• Tnums [CGO '22]: Reasoning about the soundness of bitwise tracking –
Manually encoded correctness specification and semi-manual verification

RAPL - Rutgers Architecture and Programming Languages Lab 4

Develop Automated Verification
Tools that can be used to check a

patch before it is accepted
(e.g., as part of CI)

Thanks to Paul Chaignon for running CI with Agni for the latest bpf-next

RAPL - Rutgers Architecture and Programming Languages Lab

• Is it Sound?

Linux
running in

QEMU

• Validate
unsound behavior

POC eBPF
program

Verifier
in LLVM IR

Overview of the Agni, which “Verifies the Verifier”

5

• ~5000 LOC
• 💡Only model
subset of C

Verifier's
C source

code

Automated
C to SMT

Generation

Custom trans-
formation

passes

• Inline function calls
• Eliminate dead code
• Lower memcpys

LLVMToSMT

• Bitvector theory
• Leverage MemorySSA
analysis

SMT file

Verification
Synthesize

eBPF
Programs

RAPL - Rutgers Architecture and Programming Languages Lab 6

Specification at the lowest
abstraction level (C code) makes

verification challenging

RAPL - Rutgers Architecture and Programming Languages Lab

When is an Abstract Operator Sound?

7

P Q abstract
input states

R

abstract output
state

concrete
inputs

concrete
operator

concrete
output

x y

z

f

g

abstract operator

RAPL - Rutgers Architecture and Programming Languages Lab

Soundness Specification in First Order Logic

8

RAPL - Rutgers Architecture and Programming Languages Lab

Value Tracking Abstract Domains in the Linux Kernel

9

tristate

unsigned 64

signed 64

unsigned 32

signed 32

bitwise domain

Domain of all abstract domains:

interval domains

RAPL - Rutgers Architecture and Programming Languages Lab

Soundness Specification with Multiple Domains

10

RAPL - Rutgers Architecture and Programming Languages Lab

Challenges of Verifying Real World Code

● Performed verification on all kernel
versions starting from v4.14

11

Kernel Version Sound?

v4.14 ❌

v5.5 ❌

v5.7 ❌

... ❌

v5.12 ❌

v5.13 ❌

v5.14 ❌

v5.15 ❌

... ❌

🤔● Are all versions truly unsound?
● C to SMT translation flawed?
● Soundness specification incorrect?

What is the cause of verification failures?

💡

RAPL - Rutgers Architecture and Programming Languages Lab

Implicit Refinement in the Kernel

12

Shared
refinement
operator

1.abstract abstractALUOp(
2. concreteOP op, abstract P, abstract Q)
3.{
4. abstract R;
5. switch (op) {
6. case BPF_ADD:
7. R = abstractOpADD(P, Q);
8. case BPF_SUB:
9. R = abstractOpSUB(P, Q);
10. case BPF_MUL:
11. R = abstractOpMUL(P, Q);
12. .
13. .
14. .
15. reg_bounds_sync(R);
16. return 0;
17.}

💡

RAPL - Rutgers Architecture and Programming Languages Lab 13

concrete
inputs

abstract
operator

shared
refinement
operator

concrete
operator

concrete
output

x1 x2
a1 a2

opg

xo

abstract
input states

ao abstract output
state

sro

g

Shared Refinement Operator Preconditions Abstract States

All inputs abstract values are preconditioned by a
shared refinement operator

RAPL - Rutgers Architecture and Programming Languages Lab

A Soundness Specification in the presence of SRO

14

RAPL - Rutgers Architecture and Programming Languages Lab

Success in Proving the Soundness of Some Kernels

● Proved that all abstract operators in
kernels starting from v5.13 are sound

15

Kernel Version Sound?

v4.14 ❌

v5.5 ❌

v5.7 ❌

... ❌

v5.12 ❌

v5.13 ✅

v5.14 ✅

v5.15 ✅

... ✅

● What can we do about unsound
versions?

How do we convince developers that
these actual bugs?

We generate actual eBPF programs
using differential program synthesis!

[CAV 2023]

RAPL - Rutgers Architecture and Programming Languages Lab 16

What does an operator being
unsound mean?

There exists input abstract states
where the operator produces an ill-

formed output abstract state

RAPL - Rutgers Architecture and Programming Languages Lab 17

Is this “Unsoundness” realizable?

RAPL - Rutgers Architecture and Programming Languages Lab

Differential Synthesis for Synthesizing eBPF Programs

18

?* = BPF_OR(?*,?*)

?* = BPF_AND(?*,?*)

?# = abstractOpOR(?#,?#)

?# = abstractOpAND(?#,?#)

concrete abstract

∈

∉ ∈

∈

Initial

RAPL - Rutgers Architecture and Programming Languages Lab 19

Concrete Proof of Concept
Programs were helpful to

reproducing the bugs

RAPL - Rutgers Architecture and Programming Languages Lab

When Verification Tools are Continuously Used

20

Kernel Version Solving Time
v4.14 2.5h
v5.5 2.5h
v5.9 4h
v5.13 10h
v5.19 36h
v6.3 36h
v6.4 several weeks
v6.5 timeout
v6.6 timeout
v6.7 timeout
v6.8 timeout

Can we significantly reduce the solving time?

RAPL - Rutgers Architecture and Programming Languages Lab

P Q abstract
input states

R

abstract output
state

21

Why is Solving Time Slow?

concrete
inputs

concrete
operator

concrete
output

x y

z

f

g
~5000 lines of SMT for
e.g. BPF_AND

abstract
operator

shared
refinement
operator

opg sro

Few ~700 lines of
SMT for
e.g. BPF_AND

abstract
operator

~3000 lines of SMT

shared
refinement
operator

RAPL - Rutgers Architecture and Programming Languages Lab 22

Divide and Conquer to Make Verification Feasible

g

abstract
operator

shared
refinement
operator

opg sro

abstract
operator

shared
refinement
operator

Can we individually verify opg and sro ?

RAPL - Rutgers Architecture and Programming Languages Lab 23

concrete
inputs

concrete
operator

concrete
output

x y

z

f abstract
operator

opg

P Q abstract
input states

R'

intermediate
abstract
output state

concrete
input

x'
shared

refinement
operator

sro

abstract
input state

final abstract
output state

R

P'

and R is a refinement of P’

Divide and Conquer to Make Verification Feasible

RAPL - Rutgers Architecture and Programming Languages Lab 24

Why Divide-and-Conquer Fails?

concrete
inputs

concrete
operator

concrete
output

x y

z

f abstract
operator

opg

P Q abstract
input states

R'

intermediate
abstract
output state

concrete
input

x'
shared

refinement
operator

sro

abstract
input state

final abstract
output state

R

P'

and R is a refinement of P’

sound? sound?

sound

✔✗

✗

RAPL - Rutgers Architecture and Programming Languages Lab

case BPF_AND:
out.tnum = tnum_and(in1, in2);
out.s32, out.u32 = interval_and_32(in1, in2);
out.s64, out.u64 = interval_and_64(in1, in2);

...
case BPF_OR:

...
...

out = sro(out);

25

Latent Unsoundness in the Abstract Operators

case BPF_AND:
out.tnum = tnum_and(in1, in2);
out.s32, out.u32 = interval_and_32(in1, in2);
out.s64, out.u64 = interval_and_64(in1, in2);

out = sro(out);

RAPL - Rutgers Architecture and Programming Languages Lab 26

Latent Unsoundness: interval_and_64

case BPF_AND:
out.tnum = tnum_and(in1, in2);
out.s32, out.u32 = interval_and_32(in1, in2);
out.s64, out.u64 = interval_and_64(in1, in2);

1. def interval_and_64(in1, in2):
2. out.u64_min = in1.tnum_value;
3. out.u64_max = min(in1.u64_max, in2.u64_max);
4. if (in1.s64_min < 0 || in2.s64_min < 0):
5. out.s64_min = INT64_MIN;
6. out.s64_max = INT64_MAX;
7. else:
8. out.s64_min = out.u64_min;
9. out.s64_max = out.u64_max;Unsafe casting - unsigned to signed

Obtaining Signed Interval Bounds from Unsigned Interval Bounds!

RAPL - Rutgers Architecture and Programming Languages Lab 27

Avoiding Latent Unsoundness: When is such Casting Safe?

1. s64_min = u64_min;
2. s64_max = u64_max;Unsafe casting - unsigned to signed

u64_min ≤ u64_max ≤ 2⁶³-1 0 ≤ s64_min ≤ s64_max

2⁶³-1 < u64_min ≤ u64_max s64_min ≤ s64_max < 0✔

✔

u64_min ≤ 2⁶³-1 < u64_max s64_max < 0 ≤ s64_min✗

Unsigned Signed

RAPL - Rutgers Architecture and Programming Languages Lab 28

Fixing Latent Unsoundness

def interval_and_64(in1, in2):
…
out.u64_min = in1.tnum_value;
out.u64_max = min(in1.u64_max, in2.u64_max);
if (in1.s64_min < 0 || in2.s64_min < 0):
out.s64_min = INT64_MIN;
out.s64_max = INT64_MAX;

else:
out.s64_min = out.u64_min;
out.s64_max = out.u64_max;

…

Unsafe casting

def FIXED_interval_and_64(in1, in2):
…
out.u64_min = in1.tnum_value;
out.u64_max = min(in1.u64_max, in2.u64_max);
if ((s64) out.u64_min <= (s64) out.u64_max):
out.s64_min = INT64_MIN;
out.s64_max = INT64_MAX;

else:
out.s64_min = out.u64_min;
out.s64_max = out.u64_max;

…

Safe casting

sound? sound?✔✗

RAPL - Rutgers Architecture and Programming Languages Lab

Divide-and-Conquer Makes Verification Super Fast!

29

Kernel Version
Old Strategy
Runtime

New Strategy
Runtime

v4.14 2.5h <5 min

v5.5 2.5h <5 min

v5.9 4h <5 min

v5.13 10h <5 min

v5.19 36h <15 min

v6.3 36h <15 min

v6.4 several weeks <15 min

v6.5 timeout <15 min

v6.6 timeout <15 min

v6.7 timeout <15 min

v6.8 timeout <30 min

BPF Instruction
Sound before
patch?

Sound after
patch?

bpf_and ✗ ✔

bpf_and_32 ✗ ✔

bpf_or ✗ ✔

bpf_or_32 ✗ ✔

bpf_xor ✗ ✔

bpf_xor_32 ✗ ✔

RAPL - Rutgers Architecture and Programming Languages Lab 30

Some Patches Upstreamed after Verification with Agni

author Harishankar Vishwanathan <harishankar.vishwanathan@rutgers.edu>
committer Daniel Borkmann <daniel@iogearbox.net> 2021-06-01 13:34:15 +0200
commit 05924717ac704a868053652b20036aa3a2273e26 (patch)
tree 7dc403334b7374dee17fa63b3a7477a5a1d04ba4
parent e8e0f0f484780d7b90a63ea50020ac4bb027178d (diff)
download bpf-next-05924717ac70.tar.gz

bpf, tnums: Provably sound, faster, and more precise algorithm for tnum_mul

author Harishankar Vishwanathan <harishankar.vishwanathan@gmail.com>
committer Daniel Borkmann <daniel@iogearbox.net> 2024-04-16 17:55:27 +0200
commit 1f586614f3ffa80fdf2116b2a1bebcdb5969cef8 (patch)
tree 7b5f4fa20fcbbdf316f4832c33d79dc8d4e8723d
parent dac045fc9fa653e250f991ea8350b32cfec690d2 (diff)
download bpf-next-1f586614f3ff.tar.gz

bpf: Harden and/or/xor value tracking in verifier

Running Agni as part of CI – Thanks Paul and Hari

RAPL - Rutgers Architecture and Programming Languages Lab

Improving the Precision of the Abstract Operators

31

Upstreamed a few months ago to
bpf-next

RAPL - Rutgers Architecture and Programming Languages Lab 32

Looking Ahead?

Specify the verifier at a higher level of abstraction?

Automatically Checking the Precision of Operators?

A compiler explorer like framework for the eBPF
verifier? Patches with correctness arguments

Verifier in user space?

RAPL - Rutgers Architecture and Programming Languages Lab 33

“Always-on” Lightweight Formal
Methods have the potential to make

the eBPF verifier robust

RAPL - Rutgers Architecture and Programming Languages Lab

Open Source

Visit the Agni GitHub page for details: https://github.com/bpfverif/agni

34

https://github.com/bpfverif/agni

